リレー講座

核医学技術の基礎 「SPECT装置による撮像から画像処理まで」

須田 匡也 SUDA Masaya

《はじめに》

体内から放出された y 線を画像化する核医学検 査は、ガンマカメラで各種検査に応じた条件で撮 像、画像処理を経て読影に至っている。古くは、 放出された y 線を直接フィルムや CRT に画像化 させていたため、職人的な技術を必要としていた。 しかし、高性能化が進み現在のフルディジタルカ メラでは、シンチレーション光から置き換えられ た電気パルスをディジタル変換後、画像処理装置 に入力し、画像再構成や補正を行う事で高い安定 性が担保されている。その一方で、様々な撮像や 画像処理が行われ、撮像条件や画像処理の違いで 画質が大きく異なる。そして、この違いは読影の 際に大きく影響するため、診断には撮像技術の知 識も要求される。

《ガンマカメラの構成とシンチレータの性質》

ガンマカメラは主に検出器,波高分析器,位置 演算回路,処理装置で構成されている。その中で 検出器は、 y線に対し、一定方向成分のみを選択 させる鉛(一部タングステンも在る)のコリメータ と平板のNaI(Tl)シンチレータ、ライトガイド、 そしてシンチレータ内で発生する微弱な光を電子 に変換する光電面、光電子を増幅(10⁶倍程度)さ せる光電子増倍管から構成される(図1左)。近年 臨床使用に導入されている半導体SPECTが y線 を直接電気信号に変換するのに対し、アンガー型 ガンマカメラの場合、 y線がシンチレータ内で発 光し光を間接的に電気信号へ変換させている。 NaI(Tl)結晶は空気中の水蒸気を取り込んで水溶 液になりやすい性質、いわゆる潮解性があり、通

日本医科大学 健診医療センター

〒113-0022 東京都文京区千駄木1-12-15

TEL: 03-5814-6703 FAX: 03-5814-6652 E-mail: msuda@nms.ac.jp Clinical Imaging Center for Healthcare, Nippon Medical School

タ,シンチレータ,ライトガイド,光電子増倍管か ら構成され,全ての光電子増倍管からの出力を加算 したものがZ信号である。

常はアルミニウムやガラスで密閉されている。ま た急激な温度変化や、衝撃に弱いので、取扱いに は注意が必要である。シンチレーション性質を高 めるため、アクチベータとして微量な Tlを添加 している。入射した y 線は主に光電効果で光電子 を叩き出し,結晶中で原子を励起させる。そして 電子が電離したアクチベータを捕獲し、基底状態 に戻り発光(発光波長:415nm)する。励起状態か ら基底状態に戻る差分を蛍光として放出し、 y 線 の変換効率は約13%程度である。γ線はエネル ギーが高い場合には透過力も強いため、発光せず に透過してしまうこともある。現在の主流となっ ている3/84ンチ(9 mm)シンチレータは $^{99\text{m}}$ Tc (140keV)をほぼ100%検出できる阻止能(密度: 3.67g/cm³)を持っているが、511keVの同時計数 も検出可能とするハイブリットカメラや高エネル ギーを対象とした場合、シンチレータを厚くする

図2: γ線エネルキー、クリスタルの厚さと空間分解能の 関係。 γ線のエネルギーにより検出効率が異なり、 シンチレータが厚いと拡散し空間分解能が低下する。

(1インチ: 25.4mm)か阻止能の高いクリスタル を用いることになる。しかしシンチレータを厚く すると光の拡散が大きくなり位置分解能が劣化す る。発光位置特定のための位置演算は複数(数10 本)の光電子増倍管からの出力バランスに重み付 をしているため、このような劣化が生じる(図2)。 シンチレーション光は光った後にすぐ消失するこ とが望ましいが、減衰時間はクリスタルの材質に 依存している。NaI(Tl)の場合は230nsecであり、 減衰するまでの出力を積分し、複数の光電子増倍 管の出力(Z信号)を加算したものが y 線エネル ギーになる(図1右)。この発光から減衰までに時 間を要するため、減衰する前に他のγ線が入射さ れると計測されずに数え落とされてしまう。これ は放射性崩壊なので、計数率が高い場合その確率 は高くなる。この電気パルスの重なりはパイル アップと呼ばれ、パルスの波形が異なってしまい エネルギー分解能を劣化させる。

《撮像》

核医学検査では、検査内容や使用する核種に よって大きく撮像方法が異なる。体内からの y 線 の検出に際して、被写体との相互作用は減弱と散 乱が大きく影響する。SPECT で使用するエネル ギー帯では、ほとんどがコンプトン散乱である。 一般にコンプトン散乱を受けるとエネルギーを失 い、低エネルギー側にスペクトルが遷移する。ま た散乱体がない場合でも、コリメータやクリスタ ル内で散乱の影響を受ける。NaI(Tl)ではエネル ギー分解能に限界があるため、実際の収集では光

電ピークに対しある程度幅を持ったエネルギー ウィンドウを設定している。現在のガンマカメラ ではマルチウィンドウ収集機能を持った機種が多 く、メインウィンドウを挟んだサブウィンドウか ら 散 乱 成 分 を 推 定 す る TEW (triple energy window)法や、外部線源やCTデータから求めた 散乱頻度関数と測定データから散乱線を推定する TDCS (transmission dependent convolution subtraction)法等がある。また被写体深部からの y線は組成により異なった減弱を受け、収集カウ ントが減少する。頭部の場合はこれらの吸収体が 均一な物質として、核種のエネルギーに応じた線 減弱係数で補正することが多い。投影データに対 して行う Sorenson 法や、再構成データに対して 行うChang法がある。y線に対する水の線減弱 係数(μ 値)は、^{99m}Tc \overline{c} \overline{c} 0.151/cm, ¹²³I \overline{c} \overline{c} 0.146/cmであるが、脳血流 SPECT における Chang法 のµ値の設定は特に散乱の影響により異なるため 散乱補正の有無により適切な設定値が変わる。ま た各スライスにおいて、頭蓋骨まで含めた正しい 輪郭抽出がなされていないと不正確な補正となる。 また体幹部のような不均一吸収体に対しては外部 線源によるトランスミッションやCTからµマッ プを作成する方法などがある。CTAC(CT-based attenuation correction)では、CT データを核種 に応じたエネルギーでμ値への変換テーブルを用 意している。変換テーブルはHU値0で傾きの異 なるバイリニアであることが多い。体内金属など により生じたにアーチファクトがあると補正が不 正確になる。また、撮影時間の短いCT画像と比 較的時間をかけて撮像する SPECT 画像において, 呼吸の位相の違いによるミスレジストレーション が生じ、不正確な補正を来す場合がある。

コリメータは入射してきた y 線の方向を特定す る役割を持っており,数種類の中から検査目的や 使用する核種によって選択する必要がある。コリ メータ孔(六角形,一部四角形)の形状により,一 般的に広く使用されている孔が平行に開いて配置 された平行多孔型,拡大して撮像するコンバージ ング(ファンビーム)型や,1つの穴で小さな臓器 を拡大収集するピンホール型,縮小撮像するダイ バージング型等がある。 y 線は孔同士の隔壁を通 過するため, y 線のエネルギーによって隔壁の厚 が異なり,高エネルギーでは厚くなり低エネル ギーでは薄く出来る。孔が小さいほど高分解能で あるが、入射する y 線量が少なくなり感度が低下 する。またこの孔の大きさのため、投影データは 広がり(ボケ)を含んだ画像となる。これはコリ メータと被写体間の距離が離れる程、大きくなり 分解能は低下する。現在のシステムでは、分解能 補正や開口補正と呼ばれるコリメータの開口径と 線源の位置に応じた点広がり関数(point spread function: PSF)に基づき補正する方法がある(図 3)。

また核医学は他のモダリティに比べ、少ないカ

図3:被写体-コリメータ間距離と空間分解能の劣化。被 写体とコリメータ間距離が離れるほど分解能および カウントも低下する。ある程度の距離までは開口補 正により補正できるが、大きく離れ過ぎると補正の 効果は小さい。

図4:Butterworthフィルタのパラメータと画質の変化。 パワースペクトルではoriginalのスペクトルに対し, 低域通過型のButterworthフィルタをかけること で高周波成分をカットし、フィルタ処理された画像 では低周波成分はそのままにノイズのみを効率よく 抑制している。パラメータであるカットオフ周波数 は遮断する周波数を次数は傾きが変化し、カットオ フ周波数を変化させて処理した画像と取り除かれた 情報では、高すぎるとノイズが除ききれずに、低く なり過ぎると輪郭情報から画像自体の情報まで除去 してしまい不鮮明な画像になる。

ウントデータのため統計的ノイズを常に考慮しな ければならない。感度と分解能は相反するので、 得られる計数に応じて適切な画像マトリックスの 選択が必要となる。空間分解能が低いと部分容積 効果により辺縁部は真のカウントを表現出来ない。 空間分解能を表す指標としてFWHM(full width at half maximum)が用いられ、一般にFWHMの 2倍以下のサイズでは部分容積効果でhot spotで は過小、cold spotでは過大評価となる。

《画像処理》

撮像後、得られた投影データに加えられる画像 処理は画質に大きく影響するため、核医学検査の 中でも重要な役割を担っている。体内にRIを投 与する核医学検査では、被ばくを考慮し少ない放 射能で画像化するため、他のモダリティと比べノ イズを多く含んだ画像になる。そのため、平滑化 フィルタや輪郭強調フィルタ等が利用され、9点 スムージングなどの実空間上で作用させるものと、 Butterworthフィルタのように周波数空間で作用 させるものとがある。低周波成分が画像の主な構 造を、高周波成分は画像の辺縁などの細かな情報 を担っている。一方高周波成分には,画像中のノ イズ成分も多く含まれているので、効率よくノイ ズ成分のみを除去する必要がある。SPECTでは, 前処理フィルタの中で低域通過フィルタ(low-pass フィルタ)が使用される。一般的にはButterworth フィルタが使用されており、フィルタの効果を決 めるパラメータとして、減衰の傾きであるオー ダー(次数)と低減させる周波数成分を示すカット オフ周波数(遮断周波数)がある。特にカットオフ 周波数は画質に大きく影響し、低くなるほど高周 波成分が除去され平滑化される。しかし、低くし 過ぎると本来の画像情報まで除去してしまい、辺 縁がはっきりしないメリハリのない画像になるの で注意が必要である。オーダーはある程度の範囲 内では大きな影響はないが、極端に小さいとノイ ズの低減が緩やかになり過ぎ、さらに低周波成分 も低くなりノイズが目立ってしまう(図4)。

SPECTでは2次元の投影データから逆投影し て、体内放射線分布を3次元的に構築する。単純 逆投影(back projection)法は投影像が重なった 部分を加算するため、被写体の周りにボケを生じ てしまう。再構成フィルタはこのボケを除去する ために、エッジに負の成分を重みづけしてから逆投

図5:back projection法とfiltered back projection法。 投影データをそのまま逆投影するback projection法に対し,投影データに再構成フィル タをかけ合わせてから逆投影するfiltered back projection法では,線源の周りのボケを除去出来る。

影を行うフィルタ逆投影(filtered back projection: FBP)法に用いられ, Ramp フィルタや Shepp & Loganフィルタがこれに該当する(図5)。この他、 逐次近似法がある体内の分布を統計的に推定しな がら、投影像と実際の投影データの比較を繰り返し 修正し、2つの差を小さくしていくMLEM (Maximum Likelihood-Expectation Maximization) 法やOSEM (Ordered Subset Expectation Maximization)法が ある。MLEM法では放射性同位元素が崩壊する 確率は指数分布を示し、計測される光子からなる 測定データがポアソン分布に従っていると仮定の もと、確率的に最も確からしい断層像を推定する。 MLEM 法は全ての投影データを計算して更新す るのに対し, OSEM法は投影データをいくつか の subset と呼ばれるグループに分割し, subset 内の投影データを計算して画像データの更新を繰 り返す方法である。そのためOSEM法では逐次 近似の回数(iteration)を減らす事が出来, 収束の スピードが速くなる。OSEM 法の主なパラメー タはiterationとsubsetであり、これらを掛け合 わせた更新回数により画質が大きく変化する。更 新回数が小さいと画像が収束しきれずにコントラ ストのない画像となり、逆に大きすぎると発散し てノイズの影響が目立ってしまうため、パラメー タの設定には注意が必要である。逐次近似再構成 法の主な特徴は、FBP 法と比較し低カウント領 域でのS/Nが優れる事,データに負の値がない 事や高集積部からのストリークアーチファクトが

軽減される等がある。また前述した散乱,減弱, 開口補正を画像再構成アルゴリズムに組み込むこ とも可能である。

《おわりに》

現在では3D-OSEMといった画像再構成やそ れに付随する様々な補正を行うことが出来るよう になり,今後さらに新しい画像処理といったソフ ト面の開発が進み,半導体検出器のようなハード 面もより多種多様になると思われる。従来に比べ 画質に与える影響が大きく,読影の際に撮像技術 に関する知識もさらに要求される。それらの撮像 や処理に関する情報や撮像時の患者の状況をふま えた上で,呈示された画像を総合的に評価するよ うに努めなければならない。